Durée: 144 minutes

Algèbre linéaire Examen Partie commune Automne 2019

Réponses

Pour les questions à choix multiple, on comptera :

- +3 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
- -1 point si la réponse est incorrecte.

Les notations et la terminologie de cet énoncé sont celles utilisées dans les séries d'exercices et le cours d'Algèbre linéaire du semestre d'Automne 2019.

Notation

- Pour une matrice A, a_{ij} désigne le coefficient situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur $\vec{x},\,x_i$ désigne la $i\text{-\`e}\mathrm{me}$ coordonnée de $\vec{x}.$
- $\, \mathbb{I}_m$ désigne la matrice identité de taille $m {\times} m.$
- $-\mathcal{P}_n(\mathbb{R})$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-\mathcal{M}_{m,n}(\mathbb{R})$ désigne l'espace vectoriel des matrices de taille $m \times n$
- Pour $\vec{x}, \vec{y} \in \mathbb{R}^n$, le produit scalaire euclidien est défini par $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1 : Soit a un paramètre réel et soient

$$p_1(t) = a + 4t - 5t^2$$
, $p_2(t) = 4 + at - 5t^2$, $p_3(t) = 4 - 5t + at^2$.

Alors les polynômes $p_1,\,p_2$ et p_3 sont linéairement dépendants si et seulement si

$$a \in \{-5, 1, 4\}.$$
 $a \notin \{-5, -1, 4\}.$

Question 2 : Soit A la matrice suivante

$$A = \left(\begin{array}{rrr} 3 & -2 & 1 \\ -2 & 3 & 1 \\ 0 & 0 & 5 \end{array} \right).$$

Alors une base de $\{\vec{x} \in \mathbb{R}^3 \mid A\vec{x} = 5\vec{x}\}$ est donnée par

$$\square\left(\begin{pmatrix}1\\0\\2\end{pmatrix},\begin{pmatrix}1\\1\\0\end{pmatrix}\right). \qquad \square\left(\begin{pmatrix}1\\0\\2\end{pmatrix},\begin{pmatrix}0\\-1\\2\end{pmatrix}\right).$$

$$\square\left(\begin{pmatrix}1\\0\\2\end{pmatrix},\begin{pmatrix}0\\-1\\2\end{pmatrix}\right).$$

$$\blacksquare \left(\left(\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \\ 0 \end{array} \right) \right). \qquad \Box \left(\left(\begin{array}{c} 0 \\ -1 \\ 2 \end{array} \right), \left(\begin{array}{c} 1 \\ -1 \\ 0 \end{array} \right) \right).$$

Question 3: Soit A une matrice de taille $n \times n$ diagonalisable.

Si toutes les valeurs propres de A sont non nulles, alors il est toujours vrai que

 \square A^T et A^{-1} ne sont pas forcément diagonalisables.

 A^T et A^{-1} sont diagonalisables.

 \square A^T est diagonalisable, mais A^{-1} n'est pas forcément diagonalisable.

 \square A^{-1} est diagonalisable, mais A^T n'est pas forcément diagonalisable.

Question 4: Soit

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & 0 \\ 0 & -1 & 3 & 6 \\ 0 & -5 & 15 & 18 \\ 0 & 2 & -6 & -6 \end{array}\right).$$

Les valeurs propres de A sont

3, 5, 0 et 2.

 $\begin{bmatrix} -1, 15, -6 \text{ et } 2 \end{bmatrix}$.

2, 6, 0.

-2.2 et 0.

Question 5: Soit A une matrice de taille $n \times n$.

Si A est orthogonale, laquelle des affirmations suivantes n'est pas forcément vraie?

- Pour $\vec{v}, \vec{w} \in \mathbb{R}^n$, $A\vec{v}$ est orthogonal à $A\vec{w}$ si et seulement si \vec{v} est orthogonal à \vec{w} .
- $\det A = 1.$
- A^T est orthogonale.

Question 6 : Soit $T:\mathcal{M}_{2,2}(\mathbb{R})\to\mathcal{M}_{2,2}(\mathbb{R})$ l'application linéaire définie par

$$T\left(\left(\begin{matrix} a & b \\ c & d \end{matrix}\right)\right) = \left(\begin{matrix} a-d & b+c \\ c-b & a+d \end{matrix}\right).$$

 $\text{La matrice } M = [T]_{\mathcal{B},\mathcal{B}} \text{ de } T \text{ par rapport \`a la base } \mathcal{B} = \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right),$ telle que $[T(A)]_{\mathcal{B}} = M[A]_{\mathcal{B}}$ pour tout $A \in \mathcal{M}_{2,2}(\mathbb{R})$, est

- $\square M = \begin{pmatrix} 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}.$ $\square M = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 2 & 0 & 0 & 0 \end{pmatrix}.$
- $\blacksquare M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$

Question 7 : Soient α un nombre réel et

$$A = \left(\begin{array}{cccc} 1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & \alpha & 1 \\ -1 & 1 & 1 & \alpha \end{array}\right).$$

La matrice A est inversible si et seulement si

 $| \alpha \in \{3, -1\}.$

 $\alpha \notin \{-3, 1\}.$

 $\alpha \in \{-3, 1\}.$

 $\alpha \notin \{3, -1\}.$

Question 8 : Soit A une matrice de taille $m \times n$ avec $m < n$. Alors il est toujours vrai que
$A\vec{x} = A\vec{c}$ possède une infinité de solutions pour tout choix de $\vec{c} \in \mathbb{R}^n$.
$A^T \vec{y} = \vec{0}$ possède une solution unique.
Question 9 : Soit $T: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire définie par
The function in the stress of $T:\mathbb{R} \to \mathbb{R}$ is application in the are defined part $T(\vec{e}_1) = 6\vec{e}_1 + 12\vec{e}_2 - 3\vec{e}_3 , \qquad T(\vec{e}_2) = 2\vec{e}_1 + 4\vec{e}_2 - \vec{e}_3 ,$
$T(\vec{e}_3) = 8\vec{e}_1 + 12\vec{e}_2 - 8\vec{e}_3$, $T(\vec{e}_4) = 8\vec{e}_1 + 10\vec{e}_2 - 10\vec{e}_3$,
où $(\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4)$ et $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ sont les bases canoniques de \mathbb{R}^4 et \mathbb{R}^3 respectivement. Alors
Question 10: La matrice symétrique $A = \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}$ est orthogonalement diagonalisable et peut
s'écrire sous la forme $A = QDQ^T$, avec Q une matrice orthogonale et D une matrice diagonale.
Si $d_{11} > 0$, alors un choix possible pour Q est
$\square Q = \begin{pmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}. \qquad \blacksquare Q = \begin{pmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix}.$
Question 11 : Soit A une matrice de taille $m \times n$ et soit $\vec{b} \in \mathbb{R}^m$. Soit $\vec{w} \in \mathbb{R}^n$ une solution du système linéaire $(A^T A)\vec{x} = A^T \vec{b}$. Alors il est toujours vrai que
\vec{w} est une solution du système linéaire $A\vec{x} = \vec{b}$.
\Box la matrice A^TA est inversible.
$\ \vec{b} - A\vec{w}\ \le \ \vec{b} - A\vec{u}\ $ pour tout $\vec{u} \in \mathbb{R}^n$.
Question 12: Parmi les quatre sous-ensembles de $\mathcal{P}_2(\mathbb{R})$ suivants:
$\mathcal{E}_1 = \left\{ a_0 + a_1 t + a_2 t^2 \in \mathcal{P}_2(\mathbb{R}) \mid a_1 = 0 \right\},$
$\begin{split} \mathcal{E}_2 &= \left\{ a_0 + a_1 t + a_2 t^2 \in \mathcal{P}_2(\mathbb{R}) \mid a_2 = a_0 + a_1 \right\}, \\ \mathcal{E}_3 &= \left\{ a_0 + a_1 t + a_2 t^2 \in \mathcal{P}_2(\mathbb{R}) \mid a_1 = a_2 + 3 \right\}, \end{split}$
$\mathcal{E}_3 = \{ a_0 + a_1 t + a_2 t^2 \in \mathcal{P}_2(\mathbb{R}) \mid a_1 = a_2 + 3 \},$ $\mathcal{E}_4 = \{ a_0 + a_1 t + a_2 t^2 \in \mathcal{P}_2(\mathbb{R}) \mid a_0^2 = a_1^2 \},$
$\mathcal{C}_4 = \{u_0 + u_1 t + u_2 t \in \mathcal{F}_2(\mathbb{R}) \mid u_0 = u_1\},$ combien sont des sous-espaces vectoriels de $\mathcal{P}_2(\mathbb{R})$?

3.

4.

2.

1.

Question 13: Soit $T: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire définie par

$$T\left(\left(\begin{array}{c}x_1\\x_2\end{array}\right)\right)=\left(\begin{array}{c}x_1+2x_2\\8x_1+x_2\end{array}\right)\,.$$

Si $M = [T]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} -5 & 10 \\ -2 & 7 \end{pmatrix}$ est la matrice de T par rapport à la base $\mathcal{B} = \left(\begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right)$, telle que $\left[T(\vec{v})\right]_{\mathcal{B}} = M\left[\vec{v}\right]_{\mathcal{B}}$ pour tout $\vec{v} \in \mathbb{R}^2$, alors

$$b_1 = 2, b_2 = 1.$$

Question 14: Soit

$$A = \left(\begin{array}{rrr} 1 & -1 & 1 \\ 1 & -1 & 0 \\ 1 & -2 & -1 \end{array}\right).$$

Les coefficients de sa matrice inverse $C = A^{-1}$ satisfont

$$c_{11} = -1$$
 et c_{32}

Question 15: Soit A une matrice de taille $m \times n$. Soit W le sous-espace vectoriel de \mathbb{R}^m défini par $W = \{ \vec{w} \in \mathbb{R}^m \mid \text{il existe } \vec{v} \in \mathbb{R}^n \text{ tel que } A\vec{v} = \vec{w} \}$.

Si $\dim(W) = k$, alors

 $\dim(\operatorname{Ker} A^T) = m - k.$

Question 16: Soit $T: \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire définie par

$$T\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}\right) = \begin{pmatrix} x_1 + 2x_2 - 3x_3 + 4x_4 \\ 2x_1 + x_2 - x_4 \\ 3x_1 + x_2 + x_3 - 3x_4 \\ x_2 - 2x_3 + 3x_4 \end{pmatrix}.$$

Alors

$$\blacksquare \text{ Ker } T = \text{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Question 17: Soient h un paramètre réel

$$A = \begin{pmatrix} 1 & -4 & -3 \\ -1 & 12 & 5 \\ -1 & 4h + 4 & h + 3 \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 0 \\ h - 3 \\ 2 \end{pmatrix}.$$

Alors l'équation matricielle $A\vec{x} = \vec{b}$

- admet une infinité de solutions si et seulement si $h \in \{4, 1\}$.
- admet une infinité de solutions si et seulement si $h \in \{-4, 1\}$.
- admet une infinité de solutions si et seulement si $h \in \{-4, -1\}$.
- admet une infinité de solutions si et seulement si $h \in \{4, -1\}$.

Question 18: Soient

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ 1 & -1 \end{pmatrix} \quad \text{et} \quad \vec{b} = \begin{pmatrix} 5 \\ 1 \\ 0 \end{pmatrix}.$$

Alors la solution au sens des moindres carrés $\widehat{x}=\left(\begin{array}{c}\widehat{x}_1\\\widehat{x}_2\end{array}\right)$ de l'équation $A\vec{x}=\vec{b}$ satisfait

- $\widehat{\boldsymbol{x}}_1 = 10/7, \qquad \widehat{\boldsymbol{x}}_2 = 12/7.$ $\widehat{\boldsymbol{x}}_1 = -10/7, \qquad \widehat{\boldsymbol{x}}_2 = 12/7.$

Question 19: Soit A une matrice de taille $n \times n$ et soit

$$k = \det\left((A + \mathbb{I}_n)^2 - (A - \mathbb{I}_n)^2\right).$$

Alors

 $k = 4 \det(A)$.

 $k = 2 \det(A)$.

 $k = 2^n \det(A).$

 $k = 4^n \det(A)$

Question 20: Soient

$$\vec{v} = \begin{pmatrix} 0\\9\\0\\-18 \end{pmatrix} \quad \text{et} \quad W = \text{Vect} \left\{ \begin{pmatrix} 2\\-2\\0\\1 \end{pmatrix}, \begin{pmatrix} 4\\-4\\6\\2 \end{pmatrix} \right\}.$$

Alors la projection orthogonale de \vec{v} sur W est

 $\square \left(\begin{array}{c} 8\\1\\0\\-14 \end{array}\right).$

 $\square \begin{pmatrix} -12\\12\\-6\\-6 \end{pmatrix}.$

 $\square \left(\begin{array}{c} -360\\ 360\\ -432\\ 100 \end{array} \right).$

Question 21: Soient

$$\mathcal{B} = \left(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right) \quad \text{et} \quad \mathcal{C} = \left(\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \right)$$

deux bases de \mathbb{R}^3 . Alors la matrice de passage $P = P_{\mathcal{C},\mathcal{B}}$ de la base \mathcal{B} vers la base \mathcal{C} , telle que $\left[\vec{x}\right]_{\mathcal{C}} = P\left[\vec{x}\right]_{\mathcal{B}}$ pour tout $\vec{x} \in \mathbb{R}^3$, est

$$\square P = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

$$\blacksquare P = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}.$$

$$\Box P = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}. \qquad \Box P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & -1 \\ 1 & 1 & -2 \end{pmatrix}.$$

Question 22 : Soient A et B deux matrices carrées de taille $n \times n$ et soit $(\vec{v}_1, \dots, \vec{v}_n)$ une base de \mathbb{R}^n formée de vecteurs propres de A.

Si $\vec{v}_1, \dots, \vec{v}_n$ sont aussi des vecteurs propres de la matrice AB, alors il est toujours vrai que

- \square si B est inversible, alors B est diagonalisable.
- \square si A est inversible, alors $AB \neq BA$.
- \blacksquare si A est inversible, alors B est diagonalisable.
- \Box le déterminant de B est non-nul.